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Abstract

A coherent structure model (CSM) as a subgrid-scale (SGS) model [Kobayashi, H., 2005. The subgrid-scale models based on coherent
structures for rotating homogeneous turbulence and turbulent channel flow. Phys. Fluids 17, 045104] is applied to complex geometries
and is assessed its performance in large-eddy simulation. The CSM is one of the local SGS models, which mean herein ‘‘no averaging in
homogeneous directions”. Two types of simulation code are tested for the assessment: a structured-mesh code is used for a flow over a
backward-facing step, and an unstructured-mesh one is used for a flow in an asymmetric plane diffuser and for staggered jets in crossflow.
For all configurations, the CSM gives good predictions and is almost the same performance as the dynamic models. This local model is
simple and stable, and suitable for complex geometries.
� 2008 Elsevier Inc. All rights reserved.

PACS: 47.27.�i; 47.27.De; 47.27.E�; 47.27.ep
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1. Introduction

Coherent structures naturally arise in many turbulent
flows, and coherent eddies are an important feature of tur-
bulence. The existence of the coherent structures was veri-
fied by the direct numerical simulation (DNS). Vincent and
Meneguzzi (1991) and Jiménez et al. (1993) visualized
many vortex tubes with vorticity vectors in a homogeneous
isotropic turbulence, and showed that the distribution of
velocity derivative is strongly non-Gaussian.

Hunt et al. (1988) and Chong et al. (1990) classified the
coherent structures using the second and the third invari-
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ants of a velocity gradient tensor. A positive second invari-
ant indicates a coherent eddy whose vorticity is stronger
than its strain. This definition of the positive second invari-
ant is common to extract the coherent eddies, although
there are lots of strict definitions or rigorous thresholds:
for example, a criterion with a negative and the second
largest eigenvalue of the second invariant (Jeong and Huss-
ain, 1995) and a swirling strength criterion (Zhou et al.,
1999; Chakraborty et al., 2005).

These coherent eddies scale with the Kolmogorov
microscale and the rms of the velocity fluctuation, and have
been found universally in homogeneous isotropic turbu-
lence, planar channel flow, and mixing layers using direct
numerical simulation (Miyauchi and Tanahashi, 2001).
The most expected diameter of the coherent fine scale
eddies is 10 times of the Kolmogorov microscale. Kida
and Ohkitani (1992) showed that the high energy dissipa-
tion region has a double-peak structure and distributes
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around the vortex tube. In a homogeneous isotropic
turbulence and a temporally developing turbulent mixing
layer, Tanahashi et al. (1996, 1997) also showed that
the central region of a coherent fine scale eddy with a posi-
tive large second invariant gives a minimal energy dissipa-
tion, while the double-peak structure with a negative
second invariant distributes in the surrounding region of
the positive second invariant and gives maximal energy
dissipations.

From the viewpoint of large-eddy simulation (LES), Da
Silva and Métais (2002) used DNS data and showed the
influence of the coherent structures on grid/subgrid-scale
(GS/SGS) interactions in free shear layers. The most
intense kinetic energy exchanges between GS and SGS
occur near the coherent structures. However, GS/SGS
transfer is not very well correlated with the coherent vorti-
ces. The so-called ‘‘local equilibrium assumption” holds
globally but not locally because most viscous dissipation
of SGS kinetic energy takes place within the vortex cores,
whereas forward and backward GS/SGS transfer occurs
at quite different locations.

Natrajan and Christensen (2006) investigated the rela-
tionship between SGS dissipation and embedded coherent
structures within the log layer of wall turbulence using an
ensemble of filtered GS velocity fields obtained from parti-
cle-image velocimetry. It was revealed that strong forward-
and backward-scatter events occur spatially coincident to
individual hairpin vortices and their larger-scale organiza-
tion into vortex packets. The large-scale regions of forward
scatter are observed along the inclined interface of the
packets, coincident with strong ejections induced by the
individual vortices. Strong backward-scatter of energy is
observed at the trailing edge of the vortex packets and
weaker backscatter is also noted locally around the individ-
ual heads of the hairpin structures. In LES, local SGS mod-
els, which mean herein ‘‘no averaging in homogeneous
directions” to determine the model parameter, have been
proposed, and the most famous local SGS model is Smago-
rinsky model (SM) (Smagorinsky, 1963). As well known,
the model parameter changes among a homogeneous iso-
tropic turbulence, a turbulent mixing layer, and a turbulent
channel flow owing to a Reynolds number dependence of
the parameter, so that a wall function is needed to damp
its SGS eddy viscosity in the turbulent channel flow (see
e.g., Rogallo and Moin, 1984, 1996).

This problem was resolved by Germano et al. (1991)
using a dynamic procedure to determine the model param-
eter. This model is called the dynamic Smagorinsky model
(DSM). It is no doubt that this procedure is the most
important breakthrough in LES. However, averaging in
homogeneous directions to determine the model parameter
is needed to avoid a negative SGS eddy viscosity, which
causes a numerical instability. This constraint makes it dif-
ficult to apply to complex geometries.

To resolve the constraint of averaging in the DSM,
Ghosal et al. (1995) proposed a dynamic localization model
(LDSM), in which the mathematical inconsistency of the
model parameter in test-scale components equated with
that in grid-scale components is improved. As a result,
the flow over a backward-facing step can be stably carried
out with locally determined model parameters. However,
clipping operation is needed to avoid the negative SGS
eddy viscosity. Meneveau et al. (1996) proposed a Lagrang-
ian averaging along a pathline for the dynamic model.
These improvements, however, need more CPU time in
comparison with the DSM.

For engineering applications, some local SGS models
have been proposed. These models have in common that
the turbulent eddy viscosity is locally determined with fixed
model-parameters. Nicoud and Ducros (1999) proposed a
wall-adapting local eddy viscosity (WALE) model based
on a tensor invariant with the proper scaling at the wall,
and reproduced a transition in a periodic turbulent pipe
flow. Yoshizawa et al. (2000) proposed a nonequilibrium
fixed-parameter SGS model obeying the near-wall asymp-
totic constraint, and showed that the better performance
than the SM is obtained for turbulent channel flows. Ina-
gaki et al. (2002) suggested a mixed-time-scale SGS model
with fixed model-parameters without an explicit wall-
damping function for practical LES, and showed that it
works better than the DSM and similar to the SM for
the turbulent channel flows and the flow over a back-
ward-facing step. Vreman (2004) proposed a SGS eddy vis-
cosity model based on an algebraic theory only with the
local filter width and the first-order derivatives of velocity
field for turbulent shear flows, and showed that the model
is more accurate than the SM as well as the DSM for a
transitional and turbulent mixing layer and a turbulent
channel flow. Shimomura (1994, 1995) suggested a SGS
algebraic stress model and the model showed much better
performance than the SM for homogeneous turbulences
in a rotating frame.

Kobayashi (2005) proposed a coherent structure model
(CSM) based on the coherent structures. The model
parameter is composed of a fixed model-parameter and a
coherent structure function, which is the second invariant
in GS flow fields normalized by the magnitude of a velocity
gradient tensor and plays a role of wall-damping. The CSM
has been tested in a series of canonical turbulent flows
including rotating and non-rotating channel flows and
was found to yield a level of accuracy similar to that
obtained by using the DSM. Moreover, the CSM gave a
better prediction of relaminarization than the DSM and
the SM for turbulent channel flows with a uniform mag-
netic field perpendicular to insulated walls (Kobayashi,
2006). The better performance was indicated in MHD tur-
bulent duct flows. (Kobayashi, 2008).

In this study, the applicability of the CSM is further
assessed in the simulations of a flow over a backward-fac-
ing step, a flow in an asymmetric plane diffuser, and stag-
gered jets in crossflow. The performance of the CSM is
compared to the DSM and the LDSM.
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2. Numerical methods and SGS models

2.1. Numerical methods

The governing equations in this study are incompress-
ible continuity and momentum equations; these equations
are filtered for LES. We used a structured and an unstruc-
tured flow solvers developed at the Center for Turbulence
Research, Stanford University.

The structured-mesh flow solver is called JETCODE
(CHUCK’S CODE) and is adopted for a backward-facing
step flow. This solver is based on a second-order central-
discretization on a staggered-grid, a second-order time-
advancement, and a Poisson equation for pressure solved
using a multi-grid method (see Akselvoll and Moin, 1995,
2001).

The unstructured-mesh flow solver is named CDP after
the late Dr. Charles David Pierce of the Center for Turbu-
lence Research, Stanford University. This solver is used for
a diffuser and a crossflow. The filtered continuity and
momentum equations are solved on a cell-centered unstruc-
tured-mesh with a second-order accurate central difference
spatial discretization. A fractional step method is used for a
time-advancement procedure, and an implicit second-order
Crank–Nicolson scheme is used for both convection and
viscous terms. The Poisson equation is solved to determine
the pressure field. For further details about the numerical
algorithm, see Ham and Iaccarino (2004) and Mahesh
et al. (2004).

2.2. SGS models

In LES, the SGS stress tensor sij ¼ uiuj � �ui�uj is mod-
eled. The DSM, the LDSM, and the CSM are examined
in the present study.

2.2.1. Dynamic Smagorinsky model

In the DSM, sa
ij is modeled with the filter width D as

sa
ij ¼ �2CD2jSjSij; ð1Þ

where sa
ij is the traceless SGS stress tensor and is defined

with the SGS stress tensor sij by

sa
ij ¼ sij �

1

3
saadij: ð2Þ

Here the velocity–strain tensor for the GS or resolved com-
ponent Sij and its magnitude jSj are defined by

Sij ¼
1

2

o�uj

oxi
þ o�ui

oxj

� �
; ð3Þ

jSj ¼ 2SijSij

� �1=2
: ð4Þ

The model parameter of the DSM (Germano et al., 1991) is
determined using a least square procedure proposed by
Lilly (1992) with an average in homogeneous directions.
C ¼ hLijMiji
hMijMiji

; ð5Þ

where Lij and Mij are given by

Lij ¼d�ui�uj � �̂ui�̂uj; ð6Þ

Mij ¼ 2D2 djSjSij � 2bD2jbS jbS ij; ð7Þ

where the double filter width bD is defined as

bD
D
¼ 2: ð8Þ

In this way, C is dynamically determined in the DSM. To
compare the model parameters, the Smagorinsky constant
CS ¼ jCj1=2 is used hereafter. The test-filtered velocity bui in
homogeneous directions is calculated using a Simpson rule
as

b�f i ¼
1

6
�f i�1 þ 4�f i þ �f iþ1

� �
: ð9Þ

In (5), h i denotes the averaging in homogeneous direc-
tions. The averaging and the clipping under mþ mt < 0 (m
the molecular viscosity; mt the SGS eddy viscosity) is con-
ducted to avoid any negative values.

This model is implemented to the simulations of a back-
ward-facing step flow and a diffuser flow. Note that for the
backward-facing step flow the filter width D ¼ ðDxDzÞ1=2 is
used instead of D ¼ ðDxDyDzÞ1=3 because a filtering in the
y-direction is not adopted.

2.2.2. Dynamic localization model

The previous dynamic model needs at least one homoge-
neous direction to average the model parameter and to
avoid its negative value. This restriction causes a difficulty
when the model is applied to complex geometries.

Ghosal et al. (1995) resolved this problem using a vari-
ational formulation to dynamically determine the model
parameter of the Smagorinsky model. The new formula-
tion leads to an integral equation. This model is called
the dynamic localization model and is referred as the
LDSM in this study.

The LDSM is applicable to inhomogeneous flows and it
does not suffer from the restriction of any homogeneous
directions. However, this procedure requires an additional
computational overhead to obtain the iterative solution of
the integral equation. In addition, clipping operation is
needed to avoid the negative eddy viscosity. The descrip-
tion of the procedure in detail is far beyond the extent of
this paper, see more detail Ghosal et al. (1995).

2.2.3. Coherent structure model
There is two pathways to use the coherent structures for

the SGS model: one is to reflect precisely spatial location
between the coherent structures and the budget of the
SGS kinetic energy, the other is to reflect the collective
information about the budget to the SGS model. The for-
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mer position is attractive, but it remains in the future study.
The present model takes the latter position.

This is due to the selection of the SGS eddy viscosity
model – actually Smagorinsky type model – in order to sta-
bly apply to complex geometries. In addition, the SGS
eddy viscosity model is not well correlated with the true
SGS stress tensor obtained from filtered DNS, whereas
the SGS energy transfer – in another word the SGS energy
dissipation – is well correlated with that obtained from fil-
tered DNS (see e.g., Salvetti and Banerjee, 1995). Yet, the
SGS eddy viscosity model cannot express the backward
transfer. Again, the main objective in the present study is
to stably apply the SGS model to complex geometries
and to obtain reasonable results.

In the CSM (Kobayashi, 2005), the model parameter is
‘‘locally” defined as

C ¼ CCSMjF CSj3=2F X; ð10Þ

with

CCSM ¼
1

22
; F CS ¼

Q
E
; F X ¼ 1� F CS; ð11Þ

Q ¼ 1

2
W ijW ij � SijSij

� �
¼ � 1

2

o�uj

oxi

o�ui

oxj
; ð12Þ

E ¼ 1

2
W ijW ij þ SijSij

� �
¼ 1

2

o�uj

oxi

� �2

; ð13Þ

W ij ¼
1

2

o�uj

oxi
� o�ui

oxj

� �
; ð14Þ

where CCSM is a fixed model constant, F CS is the coherent
structure function defined as the second invariant normal-
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Fig. 2. Streamwise mean velocity profiles; (upper figure): inlet 6 x=H 6 10, 0 6
- - - -, no model; �, experimental data by Kasagi and Matsunaga (1995).
ized by the magnitude of a velocity gradient tensor E, F X is
the energy-decay suppression function which becomes
about 1.1 in homogeneous isotropic turbulences and at
the center of turbulent channel flows, and W ij is the vortic-
ity tensor in a resolved flow field. Moreover, F CS and F X

have definite upper and lower limits:

�1 6 F CS 6 1; 0 6 F X 6 2: ð15Þ
As a result, the CSM has smaller variance of the model
parameter than the DSM without averaging and the
numerical simulation with the CSM is stably carried out
even though the model parameter is locally determined
(Kobayashi, 2005).
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3. Results and discussion

3.1. Backward-facing step flow

Fig. 1 shows the computational domain for a turbulent
flow over a backward-facing step. The grid resolution is
256� 96� 64 in the x, y, and z directions, respectively; x

is the streamwise direction, y is the one normal to the walls,
and z is the spanwise one. The Reynolds number based on
the step height H and bulk velocity U b was 4800. This value
is close to 4775 in the experiment by Kasagi and Matsuna-
ga (1995); the Reynolds number based on the step height
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Fig. 5. Ratios of the SGS eddy viscosity and th
and a centerline velocity at the inlet U c is 5500. The domain
depth in z-direction is 3H . The grid was stretched out with
the factors; 4 ðx=H ¼ �5Þ: 4 ðx=H ¼ �1Þ: 1 ðx=H ¼ 0Þ: 2
ðx=H ¼ 2Þ: 2 ðx=H ¼ 10Þ: 4 ðx=H ¼ 20Þ in the x-direction;
1 ðy=H ¼ 0Þ: 10 ðy=H ¼ 0:5Þ: 1 ðy=H ¼ 1Þ: 20 ðy=H ¼ 2Þ:
1 ðy=H ¼ 3Þ in the y-direction. An inflow condition is
imposed at x=H ¼ �5, and the unsteady inflow profile is
given a fully developed channel flow at Res ¼ 290. The time
step is 0:01H=Ub. A convective condition is applied at the
outflow boundary. Statistics for the CSM, the DSM, and
no model are accumulated over 20,000 time steps
(200h=U b time units), respectively. This simulation was
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performed using JETCODE (CHUCK’S CODE), a struc-
tured incompressible flow solver developed at the Center
for Turbulence Research, Stanford University (see Aksel-
voll and Moin, 1995, 2001).

Fig. 2 shows the profiles of streamwise mean velocities
for the CSM, the DSM, and no model in comparison with
the particle-tracking velocimetry (PTV) data by Kasagi and
Matsunaga (1995). The lower figure in Fig. 2 shows the
close-up of the upper figure in a reattachment region near
a lower wall. Whereas the overall profiles of the CSM,
the DSM, and no model in the upper figure are almost
the same, the lower figure shows that no model simulation
gives under-predictions from x=H ¼ 4 to x=H ¼ 8 in a reat-
tachment region near a lower wall. The CSM and DSM,
however, agree well with the PTV data. The CSM gives a
level of accuracy similar to the DSM in spite of a local
model. The mean velocity profile of no model collapses
with the other profiles everywhere except in the recircula-
tion bubble. This is because the LES resolution turns out
to be not a DNS but an adequately resolved LES in most
of the domain. Even in this high resolution, the SGS viscos-
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experimental data by Kasagi and Matsunaga (1995).
ity affects the rms and Reynolds stress profiles as shown
below.

Figs. 3 and 4 show the profiles of streamwise rms veloc-
ities and Reynolds shear stress for the CSM, the DSM, and
no model in comparison with the PTV data by Kasagi and
Matsunaga (1995). Whereas the profiles of the CSM, the
DSM, and no model in Fig. 3 are almost the same, in
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Fig. 4 no model simulation gives under-predictions from
x=H ¼ 3 to x=H ¼ 7 at y=H ¼ 1 in comparison with the
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Fig. 5 shows the ratios of the SGS eddy viscosity mt and
the molecular viscosity m for the CSM and the DSM. The
identical profiles of the mean velocity are caused by the
small magnitude of the SGS viscosity and it is a character-
istic of LES. The ratio for the CSM becomes small at
y=H ¼ 1 because the SGS eddy viscosity depends on Dy

in D ¼ ðDxDyDzÞ2=3, and the Dy is stretched out to create
the finest mesh. On the other hand, in the present study
the ratio for the DSM does not depend on Dy because
the SGS eddy viscosity is determined using an average in
homogeneous directions and not using a filtering for the
y-direction (Germano et al., 1991, 1992). In the DSM the
filtering in the y-direction is ‘‘optional”, and in some stud-
ies the filtering is carried out. In that situation the DSM
would give a similar profile at y=H ¼ 1 to the CSM. Ina-
gaki et al. (2002) showed the effect of y-direction filtering
on eddy viscosity of DSM for a backward-facing step flow.
Although the y-direction filtering causes large augmenta-
tions around y=H ¼ 0:5, 1.5, the magnitude of eddy viscos-
ity around y=H ¼ 1 with y-direction filtering is almost the
same as that without y-direction filtering. This is due to
the dynamic procedure which models not C but CD2.

However, the sharp profile of the CSM seems to be valid
because in the small mesh the effect of mt to m should be
small. Although the SGS eddy viscosity of the CSM shar-
ply changes at y=H ¼ 1, the statistics of the first and second
moments of the CSM were almost the same as those of the
DSM. In addition, the CSM was numerically stable.

The CSM ran 15% faster in total CPU time than the
DSM, which gives it a significant advantage over the DSM.

The profiles of streamwise mean velocity, streamwise
rms velocity, and Reynolds shear stress with a coarse mesh
134� 56� 60 are shown in Fig. 6. A uniform Dx is used to
emphasize the performance of the CSM and DSM for the
coarse mesh. Apparently, there are not so big difference
between those two models except for the Reynolds
stress profile at x=H ¼ 3. The DSM shows somewhat
overestimation.

Fig. 7 shows the skin friction profiles for the CSM, the
DSM, and no model. The skin friction profiles of the
CSM and DSM agree well, whereas that of no model gives
a far reattachment point. The reattachment lengths for the
CSM, DSM, and no model are 7.09, 6.87, and 7.88, respec-
tively. However, an experimental result by Kasagi and
Matsunaga (1995) was 6.51. A higher grid resolution of
384� 192� 64 with the same stretch factors as the lower
one was examined to confirm the reattachment length. In
that study, the reattachment lengths for the CSM, DSM,
and no model are 6.81, 6.75, and 7.13, respectively. For
each resolution, it is confirmed that the CSM gives a simi-
lar prediction to the DSM.

3.2. Diffuser flow

Fig. 8 shows the computational domain for a turbulent
flow through an asymmetric plane diffuser. The diffuser has
a total expansion ratio of 4:7h and a single-sided deflection
wall of 10�. An experiment for this configuration was car-
ried out by Obi et al. (1993); more detailed experiments
were conducted by Buice and Eaton (1997). Reynolds num-
ber based on the bulk velocity U, m, and inlet height 2h is
18,000. The grid resolution is 400� 80� 80 in the x, y,
and z directions, respectively (x is the streamwise direction,
y the one normal to the walls, z the spanwise one). The time
step is 0:002h=U , and statistics are obtained from averaging
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over 40,000 time steps (80h=U time units). An inflow con-
dition is imposed at x=h ¼ �5, and the unsteady inflow
profile is given a fully developed channel flow at
Res ¼ 500. A convective condition is applied at the outflow
boundary.

This simulation was carried out using an unstructured
LES solver CDP, developed at the Center for Turbulence
Research. Stanford University. For more information
about the diffuser simulation, see Wu et al. (2006) and
Schlüter et al. (2005). In this study, two times larger filter
width was used for the CSM. Fig. 9 shows the streamwise
profiles of mean (left column) and rms (right column)
velocities at x=h ¼ 5:18; 11:96; 27:1; and 33:86 from top
to bottom for the CSM, the DSM, and no model. Those
figures reflect the DSM results with a finer grid resolution
ð590� 100� 110Þ by Wu et al. (2006) and the experimental
data by Buice and Eaton (1997). The CSM predicts almost
the same streamwise mean velocity as the fine DSM at each
x location. At x=h ¼ 27:1 the DSM and no model under-
predict the mean velocity profiles at y=h ¼ 0, while the
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Fig. 13. Profiles of mean velocity ðh�ui ¼ ðh�uii2Þ1=2Þ at x ¼ 0:45h, 0:59h, and 0:84
top to bottom. —, CSM; - - - -, LDSM; –�–, no model; d, experimental data o
CSM agrees with the experimental data at y=h ¼ 0. On
the other hand, the CSM gives some over-predictions near
an upper wall at x=h ¼ 27:1 and 33.86 in comparison with
the DSM and no model. Overall, the streamwise mean and
rms velocities of the CSM agree well with those of the fine
DSM and the experiment.

Fig. 10 shows the profiles of Smagorinsky constant
CS ¼ jCj1=2 for the CSM at each x location. At the center-
line of the inlet, the CS is about 0.09. As moving
downstream, the CS increases, and at the shear layer
region of x=h ¼ 33:86 the maximum CS gives approxi-
mately 0.14, which is close to a well-known value 0.15 in
a mixing layer.

Fig. 11 shows the skin friction profiles for the CSM,
DSM, no model, fine DSM, and experimental data. The
CSM under-predicts the skin friction from the inlet to
x=h ¼ 40 on an upper wall in comparison with the DSM
and fine DSM, while the CSM gives a good prediction of
the skin friction on a lower wall. Overall, the CSM predicts
the skin friction similar to the DSM.
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h on the left column and 1:35h, 1:60h, and 1:86h on the right column from
f mean velocity (CTR, 2007).
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3.3. Staggered jets in crossflow

Fig. 12 shows the computational domain for staggered
jets in crossflow. Liscinsky et al. (1992, 1993, 2006, 1999)
carried out a series of the experiments. The upper figure
shows the cross section view in the x–y-plane. There are
three inlets of flow: upper, lower and center inlets. The inlet
velocity of the center inlet is U 1 ¼ 1:0 and that of the upper
and lower inlets is U 2 ¼ 0:77, respectively. The Reynolds
number based on the center inlet velocity U 1, the height
of the center inlet h, and the kinematic viscosity m is
40,500. About 2 million control volumes are used in the
present simulation. Time step is determined by the CFL
condition which equals 1, and statistics are obtained from
averaging over 10,000 steps. One-dimensional results in
Figs. 13–17 are obtained from the average at z ¼ �0:22h
and z ¼ 0:22h. An inflow condition with a laminar profile
is imposed at x ¼ 0 and x ¼ �0:79h. A convective condi-
tion is applied at the outflow boundary.

The lower figure shows the cross section view of the
staggered jets in x–z-plane. The solid and the dashed circles
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Fig. 14. Profiles of the intensity of whole velocity fluctuation ðurms ¼ ðh�ui � h�ui

and 1:86h on the right column from top to bottom. —, CSM; - - - -, LDSM; –
show the inlet of the jet from the lower inflow and the
upper inflow, respectively. Namely, the upper and lower
jets are arrayed as a staggered arrangement in the z-direc-
tion. The diameter of the inlet of jet is 0:22h, and the width
of this channel is 0:88h. A periodic boundary condition is
imposed in the z-direction. Even though the periodic
boundary condition is used, the staggered jets make this
flow field inhomogeneous in the z-direction.

Therefore, the dynamic model is adopted for the LDSM
(Ghosal et al., 1995) because there is no homogeneous
direction in this configuration. In this simulation, around
30% clipping of total control volumes was conducted for
the LDSM.

Figs. 13 and 14 show the profiles of the mean velocity
and the intensity of whole velocity fluctuation ðh�ui ¼
ðh�uii2Þ1=2 and urms ¼ ðh�ui � h�uiii2Þ1=2Þ at x ¼ 0:45h, 0:59h,
0:84h, 1:35h, 1:60h, and 1:86h for the CSM, the LDSM
and no model. In Fig. 13, the dots show the experimental
data of mean velocity (CTR, 2007), which were obtained
from the United Technologies Research Center. The mean
velocity profiles of the CSM and LDSM show good
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ii2Þ1=2) at x ¼ 0:45h, 0:59h, and 0:84h on the left column and 1:35h, 1:60h,
�–, no model.
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agreement with those of experimental data. The mean
velocity profiles of the CSM and LDSM show good agree-
ment. In addition, the mean velocity and intensity of whole
velocity fluctuation of the CSM agree well with those of
LDSM. No model, however, gives higher intensity than
the CSM and LDSM because no model contains the fluctu-
ation of high wave number which should be transferred to
the SGS energy. It leads to a low mean velocity as seen at
y ¼ �0:2h in x ¼ 0:59h plane.

Fig. 15 shows the ratios of the SGS eddy viscosity and
the molecular viscosity at x ¼ 0:45h, 0:59h, 0:84h, 1:35h,
1:60h, and 1:86h for the CSM and the LDSM. Those pro-
files of the CSM are similar to those of the LDSM. In
x ¼ 0:45h and 0:59h, the CSM gives higher value than the
LDSM. On the other hand, in x ¼ 0:84h, 1:35h, 1:60h,
and 1:86h, the LDSM predicts higher value than the CSM.

Fig. 16 shows the profiles of Smagorinsky constant
CS ¼ jCj1=2 at x ¼ 0:45h, 0:59h, 0:84h, 1:35h, 1:60h, and
1:86h for the CSM and the LDSM. At y ¼ 0 in
x ¼ 0:45h, the CSM gives higher value than the LDSM,
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Fig. 15. Ratios of the SGS eddy viscosity and the molecular viscosity at x ¼ 0:4
right column from top to bottom. —, CSM; - - - -, LDSM.
but there seems to be almost a laminar flow because the
shear of the mean velocity and the intensity of whole veloc-
ity fluctuation are nearly zero as shown in Figs. 13 and 14.
Although the SGS viscosity of the CSM exhibits a peak at
y ¼ 0 in Fig. 15, the traceless SGS stress tensor sa

ij ¼
�2mT Sij becomes nearly zero.

Fig. 17 shows the profiles of the model parameter C for
the LDSM before clipping at x ¼ 0:45h and 0:59h. The
model parameter C takes negative values, so that those
negative values are clipped as zero in a practical procedure.
This affects the SGS eddy viscosity, and it gives the defer-
ence of its profiles between the CSM and LDSM near the
wall.

Fig. 18 shows the distribution of passive scalar / for the
CSM. The passive scalar of / ¼ 1 is injected from the
upper and lower inlets. The lower figure shows the zoom
view near a jet inlet. Some eddies based on the Kelvin–
Helmholtz (K–H) instability are induced along the jet, so
that the mixing of the jet is effectively promoted. The K–H
eddies are visualized in Fig. 19 with the second invariant
-0.4 -0.2 0 0.2 0.4
0

10

20

y/h

ν T
/ν

-0.4 -0.2 0 0.2 0.4
0

10

20

y/h

ν T
/ν

-0.4 -0.2 0 0.2 0.4
0

10

20

y/h

ν T
/ν

5h, 0:59h, and 0:84h on the left column and 1:35h, 1:60h, and 1:86h on the



-0.4 -0.2 0 0.2 0.4
0

0.1

0.2

0.3

y/h

C
S

-0.4 -0.2 0 0.2 0.4
0

0.1

0.2

0.3

y/h

C
S

-0.4 -0.2 0 0.2 0.4
0

0.1

0.2

0.3

y/h

C
S

-0.4 -0.2 0 0.2 0.4
0

0.1

0.2

0.3

y/h

C
S

-0.4 -0.2 0 0.2 0.4
0

0.1

0.2

0.3

y/h
C

S

-0.4 -0.2 0 0.2 0.4
0

0.1

0.2

0.3

y/h

C
S

Fig. 16. Profiles of Smagorinsky constant CS ¼ jCj1=2 at x ¼ 0:45h, 0:59h, and 0:84h on the left column and 1:35h, 1:60h, and 1:86h on the right column
from top to bottom. —, CSM; - - - -, LDSM.

-0.4 -0.2 0 0.2 0.4
-0.1

0

0.1

y/h

C

-0.4 -0.2 0 0.2 0.4
-0.04

-0.02

0

0.02

0.04

y/h

C

Fig. 17. Profiles of the model parameter C for the LDSM before clipping at x ¼ 0:45h (left) and 0:59h (right).

H. Kobayashi et al. / Int. J. Heat and Fluid Flow 29 (2008) 640–653 651
Q ¼ 100 of red (light gray). The blue (dark gray) in the fig-
ure depicts the iso-surface of Q ¼ �100 which shows high
strain regions. The high strain regions are distribute near
the K–H eddies. This means that the negative second
invariant is a good marker to obtain the high strain region
which gives the high SGS eddy viscosity.
4. Conclusions

A local SGS model based on coherent structures has
been applied to complex geometries: a backward-facing
step flow, asymmetric plane diffuser, staggered jets in cross-
flow. A structured code was used for the backstep flow, and



Fig. 19. Distribution of the second invariant near the jet inlets. Red (light
gray), Q ¼ 100; blue (dark gray), Q ¼ �100; �2827 6 Q 6 9799. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 18. Distribution of passive scalar / for the CSM.
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an unstructured one was adopted for the diffuser flow and
staggered jets, respectively. For all configurations, the local
coherent structure model gives almost the same perfor-
mance as the dynamic Smagorinsky model using an aver-
age in homogeneous directions and the dynamic
localization model. The coherent structure model is inex-
pensive and efficient in comparison with the dynamic
model, and is numerically stable without averaging. The
present model will be suitable for the complex geometry
without any homogeneous directions.
Recently, Park et al. (2006) proposed a dynamic SGS
eddy viscosity model with a global model coefficient in
the Vreman model (Vreman, 2004). A dynamic procedure
to determine the model coefficient is proposed based on
the ‘‘global equilibrium” between the SGS dissipation
and the viscous dissipation. The model coefficient deter-
mined is globally constant in space but varies only in time.
A posteriori tests of the proposed dynamic model are con-
ducted in forced isotropic turbulence, turbulent channel
flows, flow over a circular cylinder, and flows over a sphere;
excellent performance for all flows is obtained. This proce-
dure is robust and readily applied to complex flows without
homogeneous directions. This dynamic procedure would
be applicable to the present local SGS model, but its appli-
cation is remained in the future study.
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Lesieur, M., Métais, O., 1996. New trends in large-eddy simulations of
turbulence. Annu. Rev. Fluid Mech. 28, 45–82.

Lilly, D.K., 1992. A proposed modification of the germano subgrid-scale
closure method. Phys. Fluids A 4, 633–635.

Liscinsky, D.S., True, B., Vranos, A., Holdeman, J.D., 1992. Experimen-
tal study of cross-stream mixing in a rectangular duct. AIAA paper 92-
3090/NASA-TM-105694, pp. 1–11.

Liscinsky, D.S., Vranos, A., Lohmann, R.P., 1993. Experimental study of
cross flow mixing in cylindrical and rectangular ducts. NASA-CR-
187141, pp. 1–51.

Mahesh, K., Constantinescu, G., Moin, P., 2004. A numerical method for
large-eddy simulation in complex geometries. J. Comput. Phys. 197,
215–240.

Meneveau, C., Lund, T.S., Cabot, W.H., 1996. A lagrangian dynamic
subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385.

Miyauchi, T., Tanahashi, M., 2001. Coherent fine scale structure in
turbulence. In: T. Kambe et al. (Eds.), IUTAM Symposium on
Geometry and Statistics of Turbulence. Kluwer, pp. 67–76.

Natrajan, V.K., Christensen, K.T., 2006. The role of coherent structures in
subgrid-scale energy transfer within the log layer of wall turbulence.
Phys. Fluids 18, 065104.

Nicoud, F., Ducros, F., 1999. Subgrid-scale stress modelling based on the
square of the velocity gradient tensor. Flow, Turbulence Combust. 62,
183–200.
Obi, S., Aoki, K., Masuda, S., 1993. Experimental and computational
study of turbulent separating flow in an asymmetric plane diffuser. In:
Ninth Symposium on Turbulent Shear Flows, Kyoto, pp. 16–19.

Park, N., Lee, S., Lee, J., Choi, H., 2006. A dynamic subgrid-scale eddy
viscosity model with a global model coefficient. Phys. Fluids 18,
125109.

Pierce, C.D., 2001. Progress-variable approach for large-eddy simulation
of turbulent combustion. Ph.D. thesis, Stanford University.

Rogallo, R.S., Moin, P., 1984. Numerical simulation of turbulent flows.
Annu. Rev. Fluid Mech. 16, 99–137.

Salvetti, M.V., Banerjee, S., 1995. A priori tests of a new dynamic subgrid-
scale model for finite-difference large-eddy simulations. Phys. Fluids 7,
2831–2847.
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